
SYNERGIA: A HYBRID, PARALLEL BEAM DYNAMICS CODE WITH 3D
SPACE CHARGE

J. Amundson∗ and P. Spentzouris† , FNAL, Batavia, IL 60510, USA
Abstract

We describe Synergia, a hybrid code developed under
the DOE SciDAC-supported Accelerator Simulation Pro-
gram. The code combines and extends the existing acceler-
ator modeling packages IMPACT and beamline/mxyzptlk.
We discuss the design and implementation of Synergia, its
performance on different architectures, and its potential ap-
plications.

INTRODUCTION

Synergia is an accelerator physics simulation code with
a fully three-dimensional space-charge model and circu-
lar and linear machine modeling capabilities. The imple-
mentation is fully parallel. Development of Synergia has
been funded by the Department of Energy’s SciDAC Ad-
vanced Accelerator Modeling Project. The goals of this
project include building upon existing simulations and cre-
ating distributable code. Synergia is compatible with these
goals because it is a hybrid code; the primary accelerator
physics components are taken from existing, although pos-
sibly modified, codes. In the interests of distributability, we
have taken care to ensure that Synergia is easy to build on
various architectures.

Below, we give a brief description of the components
used in Synergia as well as the details involved in combin-
ing them into a single product. We pay close attention to
the build system, in keeping with the “distributable” goal
mentioned above. We also describe how we have taken ad-
vantage of Python to give us a flexible, humane user inter-
face with very little effort. Since space-charge calculations
are computationally intensive, we present benchmarks for
our code running on various parallel clusters. Finally, we
compare Synergia simulation results with results from a re-
cent accelerator study.

COMPONENTS

The two packages at the core of Synergia are
IMPACT[1] and the mxyzptlk/beamline libraries[2]. We
have added glue code and a human-interface wrapper to
these packages to form the Synergia package.

Impact

Synergia uses IMPACT for its parallel implementation
of particle propagation, RF modeling and, most impor-
tantly, parallel space-charge calculations. IMPACT con-
tains a fully three-dimensional space charge model utiliz-

∗ amundson@fnal.gov
† spentz@fnal.gov

ing the split-operator technique. The split-operator tech-
nique is applicable for Hamiltonian of the form

H = Hext + Hsc, (1)

where, in our case, Hext is the Hamiltonian for the mag-
netic optics part of the problem and Hsc is the Hamiltonian
for the space-charge part of the problem. If the transfer
maps corresponding to the individual Hamiltonians Hext

and Hsc are Mext and Msc, respectively, then

M(t) = Mext(t/2)Msc(t)Mext(t/2) + O(t2) (2)

is the transfer map for H to leading order in t. The problem
of calculating beam propagation including space-charge ef-
fects therefore factorizes into the problem of calculating the
two effects one at a time and combining them as above. The
space-charge effects in IMPACT are calculated by solving
the Poisson-Vlasov Equation using particle-in-cell (PIC)
methods. The magnetic optics effects vary quickly, but re-
quire little CPU time to compute. The space-charge effects
vary slowly, but require a great deal of CPU time to com-
pute. Without the factorization above, we would be forced
to calculate the space-charge effects on the time scale set
by the magnetic optics effects, which would be computa-
tionally prohibitive.

mxyzptlk/beamline libraries

The mxyzptlk/beamline package is a set of C++ libraries
covering a wide range of accelerator physics computa-
tions. This package was the first C++ library for accelera-
tor physics. Even though the original code is over 10 years
old, the libraries are written in a modern style, including
real objects with encapsulation and well-considered inter-
faces. The package include basic toolkit, a set of useful
utility classes such as Vector, Matrix, etc., beamline, ob-
jects for modeling elements of a beamline including a full
parser for the Methodological Accelerator Design (MAD)
language, mxyzptlk, automatic differentiation and differen-
tial algebra, and physics toolkit, a set of classes for analysis
and computation.

One of most important features of the
mxyzptlk/beamline package for our purposes is the
ability to read accelerator descriptions in the MAD
language. Since MAD has become the lingua franca of
accelerator description, being able to directly use MAD
files greatly enhances the usability of Synergia. The
flexibility of the beamline/mxyzptlk libraries made it easy
for us to utilize the features we needed, namely the MAD
parser and generalized propagator functors. Synergia
passes a mad file and beamline name to beamline and
beamline returns an array of transfer maps divided into an
arbitrary number of slices.

SYNERGIA

Synergia is the combination of IMPACT,
mxyzptlk/beamline, glue code to get the two pack-
ages talking to each other and a wrapper providing a
simple, yet powerful, human interface. Figure 1 shows
the relationship between Synergia components as well
as the role MAD files, studies and analysis tools play in
producing results.

Synergia

wrapper

mxyzptlk/
beamline

IMPACT

glueMAD
input

results

results

analysis
tools

accelerator
studies

comparisons

Python

C++

C++

Fortran 90

Octave

ROOT

Figure 1: Synergia components and their relation to outside
inputs.

Build System

Portability has been a major design concern in creat-
ing Synergia. We rely on multiple components written in
multiple languages. While using multiple components al-
lows us to quickly put together a powerful package, it also
creates a configuration management problem. Multiple-
language issues are particularly problematic because call-
ing conventions vary from platform to platform. We solve
the multiple language part of the problem by writing all
of the inter-language wrapper code in terms of macros that
can be redefined for various platforms. We solve configura-
tion management problem by incorporating a modern build
system based on the GNU Autotools to provide consistent
builds on all platforms.

In principle, building Synergia is as simple as exe-
cuting “./configure && make && make install” in
the mxyzptlk directory followed by “./configure &&

make” in the Synergia directory. In practice, many options
to configure are available. The two principles we have fol-
lowed in constructing the build system are (1) modifying
the source (including Makefiles) should never be necessary,
and (2) all options should come with reasonable defaults.

To date, Synergia builds without modifications on Linux
systems using either the Portland Group F90 compiler or
the Intel F90 compiler, g++, and either MPICH or lam.
Synergia also builds without modifications on AIX, using
XL Fortran, Visual Age C++ and POE. Compiling Synergia
on other platforms should be a straightforward exercise.

Human Interface

The user-level interface to Synergia consists of a set of
Python classes that wrap the low-level interfaces to the
code. To run Synergia, the user writes a short Python script
utilizing these classes. An example script excerpt is shown
in Figure 2. The use of Python has several advantages:
There is no specialized syntax to learn. A user familiar
with Python will be able to understand the entire interface
easily. A user unfamiliar with Python will be able to copy
an example script and modify it with little difficulty. Al-
though most examples will only use Python trivially, the
full power of the language is available should it be needed.
Last, but not least, the use of an existing scripting language
greatly simplifies our implementation, meaning we were
able to write it quickly with a minimum of opportunities
for introducing bugs.

p = impact_parameters.Impact_parameters()

ip.processors(16,4)

ip.space_charge_BC(

"trans finite, long periodic round")

ip.input_distribution("6d gaussian")

ip.pipe_dimensions(0.04,0.04)

ip.kinetic_energy(0.400)

ip.scaling_frequency(201.0e6)

ip.x_params(sigma = .004 , lam = 1.0e-4)

ip.y_params(sigma = .004 , lam = 1.0e-4)

pz = ip.gamma() * ip.beta()*ip.mass_GeV

ip.z_params(sigma = 0.10, lam = 3.0e-4 * pz)

ip.particles(2700000)

ip.space_charge_grid(65,65,65)

booster = impact_elements.External_element(

length=474.2,kicks=100, steps=1,

radius=0.04,

mad_file_name="booster.mad")

for turn in range(1,11):

ip.add(booster)

Figure 2: Example excerpt of a Python script showing the
Synergia user interface.

Parallel Performance

We have run benchmarks of our code on four different
clusters under a variety of configurations. Our benchmark
is a simulation of a single revolution of the FNAL Booster
(see the following section.) The simulation included 2.7
million particles undergoing 100 space-charge kicks on a
65×65×65 grid.

Three of the clusters are Linux clusters: lqcd[4],
heimdall[5] and Alvarez[6]. Our benchmarks include a
sampling of the range of currently-available networking
options for Linux: 100 Mbit Ethernet, Gigabit Ethernet and
Myrinet 2000. We also compared the performance of the
Intel fortran compiler (ifc) with the Portland Group fortran
compiler (pgf90). For the former, the code was compiled
with the optimization setting“-O2”. For the latter the code
was compiled with the setting “-fast”. The fourth clus-
ter we used for benchmarking was Seaborg[7], the 6,080-
processor IBM SP at NERSC.

The results of our benchmarks are displayed in Figure 3.
Overall, we find that Synergia scales very well up to a cer-
tain scale set by the networking used. The clear winner in
scaling is the specialized configuration found in Seaborg.
The fastest Linux clusters, however, showed overall supe-
rior performance. We can also see that Gigabit or Myrinet
is necessary for a Linux cluster to effectively take advan-
tage of more than a few processors. These tests were insuf-
ficient to distinguish between Gigabit and Myrinet. Some-
what surprisingly, we also see that the Intel compiler pro-
duced significantly better performance than the Portland
compiler for our application.

1

10

100

1 2 4 8 16 32 64 128 256 512

pe
rf

or
m

an
ce

 (
bo

os
te

r
tu

rn
s/

ho
ur

)

cpu

lqcd (2.4 GHz Xeon, ifc, Myrinet)
seaborg (375 MHz POWER3, IBM SP)

heimdall (Athlon 1800, ifc, Gb)
heimdall (Athlon 1800, pgf90, Gb)

heimdall (Athlon 1800, pgf90, 100 Mbit)
alvarez (866 MHz PIII, pgf90, Myrinet)

Figure 3: Performance on various parallel machines.

APPLICATION TO FNAL BOOSTER

The first important application of Synergia has been to
model the FNAL Booster[3]. The Booster is an alternat-
ing gradient synchrotron with a radius of 75.47 meters. It
accelerates protons from 400 MeV to 8 GeV with a typ-
ical injected current of over 450 mA. Since space-charge
effects are expected to be significant in the Booster it is an
excellent testing ground for Synergia.

As an example, Figure 4 shows a comparison be-
tween measured vertical and horizontal beam widths in the
Booster with a Synergia simulation. Here 42 mA of current
was injected in each of the 11 initial turns. For a more de-
tailed discussion of recent FNAL Booster studies including
comparisons to Synergia, see Reference [8].

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120 140 160

be
am

 w
id

th
 [m

m
]

turn #

FNAL Booster April 23, 2003 Data (15 data sets averaged)

vertical beam width
Synergia simulation

horizontal beam width
Synergia simulation

Figure 4: Synergia simulations compared to beam width
measurements from the FNAL Booster.

REFERENCES

[1] J. Qiang, R. D. Ryne, S. Habib and V. Decyk, J. Comput.
Phys. 163, 434 (2000).

[2] L. Michelotti, FERMILAB-CONF-91-159 Presented at 14th
IEEE Particle Accelerator Conf., San Francisco, CA, May 6-
9, 1991.

L. Michelotti, FERMILAB-FN-535-REV.

L. Michelotti. Published in Conference Proceedings: Auto-
matic Differentiation of Algorithms: Theory, Implementation,
and Application. Society for Industrial and Applied Mathe-
matics. First International Workshop on Computational Dif-
ferentiation. 1991.

L. Michelotti. Published in Conference Proceedings: Ad-
vanced Beam Dynamics Workshop on Effects of Errors in Ac-
celerators, their Diagnosis and Correction. Corpus Christi,
Texas. October 3-8, 1991. American Institute of Physics: Pro-
ceedings No.255. 1992.

[3] Booster Staff 1973 Booster Synchrotron ed E L Hubbard
Fermi National Accelerator Laboratory Technical Memo TM-
405

[4] http://lqcd.fnal.gov/

[5] Linux cluster in the beams theory department at Fermilab.

[6] http://www.nersc.gov/alvarez/

[7] http://hpcf.nersc.gov/computers/SP/

[8] P. Spentzouris and J. Amundson, “Space charge studies and
comparison with simulations using the FNAL Booster,” Proc.
International Computational Accelerator Physics Conference
(ICAP 2002), Michigan State University, Oct. 2002; see also
P. Spentzouris and J. Amundson, these proceedings.

